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The motion of a very thin vortex filament is investigated using the localized induction 
equation. A family of vortex filaments which move without change of form are obtained. 
They are expressed in terms of elliptic integrals of the first, second and third kinds. 
In general they do not close and have infinite lengths. In some particular cases they 
take the form of closed coils which wind a doughnut. There exist a family of closed 
vortex filaments which do not travel in space but only rotate around a fixed axis. 
Our solutions include various well-known shapes such as the circular vortex ring, the 
helicoidal filament, the plane sinusoidal filament, Euler’s elastica and the solitary- 
wave-type filament. It is shown that they correspond to the travelling wave solution 
of a nonlinear Schrodinger equation. 

1. Introduction 
The study of the motion of a vortex filament gives a clue to understanding the 

properties of the velocity fields at very large Reynolds numbers, such as turbulence 
and aircraft wakes. 

The motion of the vortex filaments in an unbounded perfect fluid is described by the 
Biot-Savart law. In  two-dimensional flow the motion becomes very simple, since the 
vortex filaments are parallel with each other. Each vortex moves with the velocity 
induced by the other vortices. There have been many studies of a wide range of prob- 
lems, from the motion of a vortex pair and trains of vortex filaments (Lamb 1932) to 
the statistical mechanics of the system of vortices (Onsager 1949). 

In the three-dimensional case, on the other hand, a quite different effect appears. 
Since the vortex filaments have a curvature in general, each vortex is moved by the 
velocity induced by itself as well as by the others. When the size of core of the vortex 
is very small compared with its radius of curvature, the motion is governed essentially 
by the local curvature of the filament (Tung & Ting 1967; Saffman 1970; Fraenkel 
1970,1972; Moore & Saffman 1972). Hama (1962, 1963) derived, on the suggestion of 
R. J. Arms, the so-called localized induction equation (LIE) (2,1), which is asymptotic- 
ally valid for the motion of a very thin vortex filament, and used it to investigate 
the motion of filaments of various shapes numerically. It is interesting to note that 
this equation is essentially the same as (6.1) which describes a one-dimensional 
classical spin system (Lakshmanan, Ruijgrok & Thompson 1976; Lakshmanan 1977). 

Betchov (1965) derived the intrinsic equations for the curvature and the torsion 
of the vortex filament from LIE and obtained the helicoidal filaments, which were 
shown to be unstable to small disturbances. 
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Starting out from the Frenet-Seret formulae in differential geometry, Hasimoto 
(1971, 1972) derived the nonlinear Schrodinger equation (NSE) (5.1) for the complex 
variable whose amplitude is the curvature and whose phase is the torsion of the vortex 
filament and obtained the plane vortex filaments rotating around a fixed axis and 
a solitary-wave-type solution which propagates steadily with constant velocity along 
the vortex filament. This equation, which is equivalent to Betchov’s intrinsic equation, 
is familiar in hydrodynamics, plasma physics, nonlinear optics, solid state physics 
and so on. It describes self-modulation of a monochromatic wave of various kinds in 
water waves and plasma waves (Benney & Newel1 1967; Karpman & Krushkal 1969; 
Taniuti & Yajima 1969; Asano, Taniuti & Yajima 1969)) two-dimensional self-focusing 
of a stationary wave beam (Talanov 1965; Kelley 1965), dynamics of a continuum spin 
system (Lakshmarian 1977), and so on. The properties of NSE and its solution have 
been extensively investigated. The travelling-wave solutions, which include the non- 
linear plane wave and the envelope solitary wave (Saffman 1961) as special cases, 
were obtained (Asano et ab. 1969; Zakhnrov & Shabat 1972, 1973; Hasimoto & 
Ono 1972; Scott, Chu & McLaughlin 1973). The complete integrability of NSE was 
shown by Zakharov & Manakov (1974). Recently Lamb (1977) found that the motions 
of the space curves have an intimate relation with the nonlinear evolution equations 
which can be solved by inverse scattering methods. The NSE which corresponds to the 
motion of a vortex filament is of course included as a special case. 

I n  this paper we seek all the shapes of vortex filaments which move steadily with 
no deformation. We deal wit>h LIE rather than NSE for the following two reasons. 
Firstly, it  is possible in principle but rather cumbersome in practice, except for some 
simple cases, to determine the shape of the vortex filament from the solution of NSE 
(see Eisenhart 1960). Secondly, the physical concepts, such as the translational and 
rotational velocities of the vortex filament, appear explicitly in LIE. The motion of a 
vortex with no deformation is equivalent to that of a rigid body if we allow its slipping 
motion along the filament. We derive in $ 2  the basic equations which describe the 
steady motion of a vortex filament. These equations are solved in 5 3. The solutions 
are expressed in terms of elliptic integrals of the first, second and third kinds. They 
have three parameters and the shapes of the vortex filaments change depending upon 
them. Several interesting shapes of vortex filaments are examined in 5 4. The vortex 
filaments do not close and have infinite lengths in general. In  some particular cases, 
however, they take the form of closed coils which wind a doughnut. Moreover for some 
special values of the parameters they reduce to the well-known shapes obtained earlier 
by other authors, for example, a circular ring, a plane sinusoidal filament (Kelvin 
1880), a helicoidal filament (Betchov 1965), Euler’s elastica (Hasimoto 1971)) the 
solitary-wave-type filament (Hasimoto 1972) and a coil winding a circular ring (Kambe 
& Takao 1971). The relation between our solution of LIE and the travelling-wave 
solution of NSE is discussed in 5 5 .  We note in $ 6  the equivalence of the equations 
between the spin system and the vortex filament. 

The stability of the vortex filaments is interesting in connection with that of the 
solutions of NSE. The stability properties of a vortex filament are known in a few 
special cases, such as a circular vortex ring and a helicoidal filament (Betchov 1965; 
Kambe & Takao 1971; Widnall 1972). Correspondingly, the studies of stability of 
the travelling-wave solutions of NSE are limited within the nonlinear plane wave 
(Lighthill 1965, 1967; Bespalov & Talanov 1966) and the envelope solitary wave 
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(Zakharov & Shabat 1972). The study of the stability of the other solutions is now in 
progress and will be reported in a separate paper. 

2. Localized induction equation 

is described by the so-called localized induction equation (Hama 1962): 
The motion of a vortex filament of infinitesimal core in an unbounded perfect fluid 

(2.1) 

where x(s, t )  denotes the position of the element of the vortex filament, t the time, s 
the distance measured along the vortex filament and the prime indicates differentia- 
tion with respect to  s. Note that the interactions with the far distant portions of the 
filament and with the other filaments, if any, are neglected in this approximation. 
Since the induced velocity is perpendicular to the vortex filament, i t  never stretches 
or contracts. It follows from the definition that 

ax/at = x' x XI', 

( X ' I  = 1. (2.2) 

We consider the motion of a filament whose shape does not change in time. Such a 
motion is composed of a solid motion and a slipping motion along the filament. A 
solid motion is generally constructed from a rotational motion and a translational 
motion. Let us denote the angular velocity of the rotational motion by SZ and the 
velocity of the translational motion by V = V,, + V,, where V,, and V, are the com- 
ponents of V parallel and perpendicular to a, respectively. Equation (2.1) says that 
the velocity a t  an element of the filament is completely determined by the shape and 
orientation of the filament. We can easily deduce the following conclusions. (i) The 
angular velocity 51 is a constant vector. The instantaneous axis of rotation moves 
with velocity V,. (ii) The parallel component V,, is invariant in time. (iii) The perpen- 
dicular component V, rotates in a plane perpendicular to 51 with angular velocity 9. 
The magnitude of V, does not change in time. (iv) There is a fixed line for this solid 
motion, which differs from the instantaneous axis of rotation by SZ x V,/Q2, where 
i2 = ISZI. We choose this fixed line as the z-axis. Then the solid motion is expressed 
as the sum of the rotational motion around the z-axis with angular velocity SZ ( = Q2) 
and the translational motion parallel to the z-axis with velocity V,, (=  V e ) ,  where 2 is 
the unit vector in the z-direction. Let C be the speed of the slipping motion which is 
constant in time. The velocity a t  an element of the filament can be written as 

ax/at = - CX' + Q B  x x + V2. 

-Cx'+ Q B  x x +  v72 = x' x XI'. 

(2.3) 

(2.4) 

The parameters C, Q and V are invariant in time.? Then (2.1) becomes 

The solution of (2.3) is immediately obtained as 

x(s, t )  = r (&)  WE, t )  + (49 + vt> 2, ( 2 . 5 )  

t The vectors x', z^ x x and are linearly independent in general. If they are linearly depen- 
dent, the shape of the vortex filament can be expressed by different combinations of C, R and 
V. It can be proved that in such cases the vortex filament takes the form either of a helicoidal 
curve whose axis is the z-axis or of a straight line parallel to the z-axis. 
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where 

and P is a unit vector perpendicular to 2 and satisfies the equation 

5 = 8-Ct ,  

a P p t  = x P. (2.7) 

If we denote the angle between i. and a reference direction perpendicular to 2 by 
O(5, t ) ,  then (2.7) gives 

where O(5) is an arbitrary function of 5. 
The shape of the vortex filament is determined by (2.2) and (2.4), which are solved 

in the next section. Since alas = a/a[ ,  the prime also means differentiation with 
respect to 5. 

w, t )  = @(5) + Qt, (2.8) 

3. Solutions 
Since (2.2) and (2.4) have the following symmetries: 

(C, SZ, V )  -+ (C,  - SZ, - V) for 5 +-5, 

(C ,SZ ,V) -+( -C , -Q ,V)  for 23 -2 ,  
and 

we can restrict the range of the parameters to 

Q Z O ,  c20, - o o < V < c o .  (3.1) 

Moreover, since the solutions for SZ = 0 happen to agree with the special cases for 
Q + 0 (see the appendix), it is sufficient to examine the case Q. > 0. The scale trans- 
formation 

T -+ r / @ ,  z -+ z / Q k ,  6 -+ [ p i ,  c -+ QkC, V -+ SZtV (3.2) 

reduces the problem to the case SZ = 1.  
The inner product of (2.4) with SZ = 1 and x‘, together with (2.2), leads to 

- C + r W +  Vz’ = 0. (3.3) 

The outer product of (2.4) and x‘, on the other hand, gives 

(2 x x 4- V2) x XI = x”, 
the z-component of which is 

= 2”. 

We have shown that (2.2) and (2.4) imply (3.3) and (3.5). It can be shown that (2.2), 
(3.3) and (3.5) imply the whole of (3.4), and then that they imply (2.4). Therefore, 
the system (2.2), (3.3) and (3.5) is equivalent to the system (2.2) and (2.4). 

Equation (3.5) is integrated to be 

where 
Z’ = B(A - R), 

R = r2, 

and A is a constant of integration. Substituting (3.6) into (3.3), we get 

81 = gv+ (c -*Av) /R.  (3.8) 
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Introduction of (3.6) and (3.8) into (2.2) g’ ives us 

where 
R’2+f(R) = 0, (3.9) 

f ( R )  = R3+ (V2- 2A) R2+ (A’- 4 - 2A V 2  + 4VC) R+ (2C- AV)’. (3.10) 

Equation (3.9) represents the motion of a point of unit mass in a potential field 
Q f (R). In  order that the realizable solutions R 2 0 may exist, it is necessary that 
f (R) < 0 and that the equation 

f (R)  = 0 (3.11) 

has two non-negative roots and one non-positive root since the constant term in 
(3.10) is non-negative. We can show that for (3.11) to have such roots it is necessary 
and sufficient that the parameters A ,  C and V satisfy the following condition: 

(3.12) 

where the parameters a and h run over the range a 2 0 and -00 < h < 00, the point 
a = h = 0 being excluded. Note that the boundary surface, which is given by the 
three equalities in (3.12), corresponds to helicoidal vortex filaments (see (4.6)). The 
lines of constant A on this surface are plotted in figure 1. We can see that it is sym- 
metric about the A-axis (C = V = 0)  and that A 2 - 2, where the equality holds on 
the line C +  V = 0. 

Let the three real roots of (3.11) be a, /3, - y (a  2 /3 2 0,  y 2 0) .  Then the solution 
of (3.9) is written as 

R = a+(/3-a)sn2( t (a+y)*5Jk)  
= ,8 +- (a - p)  en2 ($(a + y)+ 5 lk )  

= - y + (a  + y )  dn2 (h(a + y)* 5 1 k), (3.13) 

k = (a-p)+/(a+y)* (3.14) 
where 

is the modulus of the Jacobian elliptic functions. 
Substituting (3.13) into (3.6) and (3.8) and integrating with respect to c, we get 

z = S(A+y)5- (a+y) tE( t (a+y)*5Ik)+z ,  (3.15) 
and 

where zo and B0 are constants of integration, and 

E(u 1 k )  = Jou dn2 (u’ I k )  du’ 

and 

(3.16) 

(3.17) 

(3.18) 

are incomplete elliptic integrals of the second and third kinds respectively (Abramo- 
witz & Stegun 1972). 

Thus, the shape of the vortex filament in steady motion is expressed by (3.13), 
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3 

(3.15) and (3.16), which take various forms depending upon the three parameters A ,  
C and V or a, /3 and y. In  general the filament does not close and has infinite length. 
I n  the next section the combinations of the parameters which give a closed vortex 
filament or several other interesting shapes for the filaments are examined. 

4. Special cases 
The solution obtained in the preceding section is for !2 = 1 (see (3.2)). In  order to 

get the solution for general values of !2 we have only to make the following transfor- 
mation in the resulting equations: 

g+Qa, p - + w  y+QZy, 
r -+ Qb, x -+ Q+z, -+ Qic, 

A --f QA, C-tG/Q+, V - t  v/nk 
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-'I 
FIGURE 2. An example of closed vortex filaments without translational velocity. (a )  The pro- 
jection on the ( r ,  8) plane. (b)  The cross-section of the doughnut. Here m = 9, n = 2, A = 2.486, 
C = 0.735, a = 4.358, /3 = 1.076 and = 0.461. 

4.1. Closed vortex filament 
Now we begin by considering the condition which gives a closed filaments. The shape 
of the filament is expressed by (3.13), (3.15) and (3.16). I n  order that they represent 
a closed filament, it is necessary that r and x be periodic functions of g with the common 
period. The function r which is expressed by the square root of (3.13) is always periodic 
and its period is given by 

where K ( k )  is the complete elliptic integral of the first kind. Since E ( u  I k )  has the 
property that 

(4.1) 
where E ( k )  is the complete elliptic integral of the second kind, z is periodic if 

4h'(k)/(a + y )4  

E(u + 2K(k) 1 k )  = E(u  I k )  + 2E(k), 

The period of z is the same as that of r .  The condition (4.2) defines a surface in the 
parameter space ( A , C ,  V ) .  The lines of constant A on this surface in the existing 
region (3.12) are plotted in figure 1. It is connected with the boundary surface (4.6) 
on the curve CV = 1, where the vortex filament becomes a circular ring (see 9 4.2). 
The point ( A ,  C, V )  = (1.305,0,0) is a saddle point. As A -+ 00, the equivalue curves 
of A approach the line C V = - 1.  

If the azimuthal angle 8 changes by 3ni.r/m over the period, where m and n are 
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integers prime to each other, the filament becomes a closed curve. This condition is 
written as? 

(4.3) 

where 
(4.4) 

Then, the closed filament winds m times a doughnut, whose cross-section is described 
by (3.13) and (3.15)) and rounds about the z-axis n times. When condition (4.3) is 
not fulfilled, the vortex filament covers the whole surface of the doughnut. 

It is interesting to see that there exists a family of closed vortex filaments without 
translational velocity ( V  = 0).  These filaments rotate only around the z-axis. We can 
show that m/n  > 2 from (4.2) and (4.3) with V = 0. In  the limit C -+ 0 (and A -+ 1.305)) 
we have m / n  = 2, a = 3.305 and p = 0. Then the hole of the doughnut disappears. 
As the magnitude of C increases, both the ratio m/n  and the size of the hole increase. 
In  the limit C -+ 00, we have m / n  M 34(3)  C2, a NN ,8 M 3C2 and a - p  M $ 4 6 .  Then we 
find a big and thin doughnut. As an example, a filament of m = 9 and n = 2 is displayed 
in figure 2. 

4.2. Helicoidal filaments 
When a = ,!? ( 5 a2, say) and a2 $: 0, the solution is a helix in general (for A =t= a2). In 
the exceptional case in which A = a2 (or CV = 1 or h = 0 below), it becomes a circular 
ring of radius a. If we denote the radius and the pitch of the helix by a and h/u respec- 
tively, the solution is written as 

2n 2 W k ) + 2 ( 2 C - A V n  a-P k = - ~  

(a + 743 a(a + Y)* (7' ) m 9 

n(Z, k) = rI(K(k) I I, k). 

r = a, e = k (a2+h2)-ic+8 o) 2 = h(a2+h2)-q+zo (4.5) 

(Betchov 1965). The parameters are given by 

It is seen that each element of the filament moves with speed -ah/(a2+h2)* and 
& a2/(u2 + h2)% in the 0- and z-directions respectively. If we imagine that the helicoidal 
filament is a rigid body, it may be regarded either as rotating around the z-axis with 
circumferential speed - a/h(a2 + h2) )  without translation or as moving along the z-axis 
with speed k l/(a2 + h2)* without rotation. The fact that  we can take such different 
viewpoints about the motion of the vortex filament arises from the linear dependence 
of the three vectors on the right-hand side of (2.3). In fact, they are related with each 
other as 

X' = (a2+h2)-B(k2xx+h2)  
(see the footnote on p. 399). 

4.3. Double helixes 
When the parameters ( A ,  C, V )  deviate slightly from (4.6) with a + 0, i.e. 

A =  2h +a2+e2 (e < l) ,  
(a2 + h2)* (4.7) 

and C and V are the same as (4.6)) the solution is written as 

t We can show, using (4.2), that m/n 3 1 in the existing region (3.12). 
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where 
p = [a2 + ( h  - (a2 + h2)-4)2]4. (4.9) 

When h =+ 0, this represents a double helix which winds around the helix of (4.5). 
In  the particular case in which h = 0 and u4 = (m/n)2 - 1, we have a closed filament, 
which takes the form of a coil winding a circular ring of radius a. When n = 1, it  
agrees with the solution obtained in the study of stability of a circular vortex ring by 
Kambe & Takao (1971). 

4.4. Straight line and small variation thereof 
The most trivial solution is a straight line which is established when a = p = 0 or 
A = 5 2 ,  C = & V or a = 0, which is a special case of the helicoidal filament. Then, 
the solution coincides with the z-axis, i.e. r E 0, and is stationary. Since x’ and 2 are 
parallel with each other, C k V is indefinite. 

In  the vicinity of the above values of parameters, the straight vortex line is slightly 
disturbed. It is obvious that, if the parameters change along the boundary (4.6), the 
vortex filament takes the form of a very elongated helicoidal filament, i.e. h/u 1.  
When the parameters go into the existing region, the following two types of vortex 
filaments appear. One is 

r = ecn(2-fetI 2 4 ) ,  8 = -+5+8,, z = [+zo,  (4.10) 

which is realized in the vicinity of the triple roots a = p = y = 0 (or a = 0, h = l), viz., 
for A = 2+$s4 (8 < 1) and V = C = & 2. 

The other is 

(4.11 a,  b )  

( 4 . 1 1 ~ )  

where = Ih - 1/lhl I. This is realized when the parameters are near the double roots 
a = p = 0 and y $. 0 (or a = 0 and h =/= l), viz., for A = 2h/(hl +G, V = f (h+ l/(hl) 
and C = & (Jhl+ l / h ) .  In  the particular case in which h = - 1 (C = V = 0), it becomes 

r = ECOs[, e = e,, = - c + ~  0, (4.12) 

~~~~h €9 @ ,ane sinusoidal filament (Kelvin 1880). 
,, p p’ 

- - 

4.5. Solitary-wave-type filament 
If the modulus k = 1 (or p = y = 0 ) ,  the vortex filament takes the form 

r = Jasech$a+[, 8 = k4(4-a)45+00,  z = t - Ja tanh$a~t+z ,  . (4.13) 

The parameters are given by A = 2, C = V and a = 4 - V 2  ( z 0). The curvature K and 
the torsion 7 of this vortex filament are 

(4.14) 

(see (5.4) and (5.5) below), which i s  the solitary wave solution of NSE (5.1). The form 
(4.13) was first derived from (4.14) by Hasimoto (1972). 

c 
2 

K ( [ )  = Ja sech frcci[, 7(5) = - = constant 
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4.6.  Plane curves 

The plane curves are obtained most simply from (5.5) by demanding that the torsion 
of the curve should vanish. The following two cases are distinguished according as 
the curvature is constant or not. 

When the curvature is constant along the filament, it becomes a circular ring dis- 
cussed in $4.2. 

When the curvature is not constant, on the other hand, (5.5) yields C = V = 0. 
This means the vortex filament only rotates around the z-axis with uniform angular 
velocity R (= 1, see ( 3 . 2 ) ) ,  which is the situation examined by Hasimoto (1971). 
The solution for ] A  1 6 2 is written as 

r =  2kcn(EIk), 6=6,,, z = ~ - 2 E ( ~ 1 k ) + z o ,  (4 .15)  

where k = $ ( A  + 2)a. The modulus k roughly represents the amplitude of variation 
of the vortex filament. The curve (4.15) is known as Euler's elastica (Love 1927). 
Since the periods of r' and x' are 4 K ( k )  and 2 K ( k )  respectively, any closed plane 
curves without cross-points cannot exist. For very small values of k J  (4.15) reduces 
to (4.12). As k increases, the filament becomes more bending, and at k = 0.8551 
( A  = 0.925) it starts to cross itself. Thereafter the solution is not acceptable since 
then LIE is not a good approximation. For A 2 2, the solution is written as 

(4.16) 

where k = 2 / ( A +  2)a. This solution is always crossed and is not acceptable. 

5. Nonlinear Schrodinger equation 

filament : 
It is known that LIE yields NSE for the curvature and the torsion of the vortex 

( l/i) all./at = 1cI." + ${I $12 + a(t)} $ 9  (5.1) 

where @ is the complex variable, 

and a(t)  is a real function oft (Hasimoto 1972). In  this section we show that the solu- 
tions in the preceding sections correspond to the travelling-wave solutions of NSE. 

The curvature and the torsion of the vortex filament are related to the differentials 
of x(s, t )  by 

x' = t, x" = m, x = -K2t+K'n+mb, 

where t, n and b are the unit vectors parallel to the tangent, the principal normal and 
the binormal of the vortex filament respectively. For the present solutions of steady 
motion, the curvature and the torsion depend only upon 6 (see (2.6)). By making use 
of the solutions in $ 3, we can show that 

(5.3) 
m 

K 2 ( [ )  = R(t) + v2- c2 ( $(g)J say), (5,4) 

(5.5) 
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It follows from (3 .9) ,  (3.10) and (5.4) that the square of the curvature $(() satisfies 
the equation 

# '2+ $3- (2A + 2 V2- 3C2) #2 + (A2- 4 - 4AC2+ 2A V 2  + 4CV + 3C4 - 4C2V' + V4) $ 
+ (C3-CV2- AC + 2V)' = 0. (5.6) 

If the curvature and the torsion are assumed to be functions of 5 only, (5 .2)  is 
written as 

which is the form of the travelling-wave solutions (see Scott, Chu & McLaughlin 1973). 
Introduction of this into (5.1) gives 

K " ( 0  = - t K 3 ( 8  + ( d 5 )  - C )  7(6) 4 6 )  - Plm 
( 2 m  - C) K ' ( 6 )  + 7'(5) K ( 5 )  = 0, 

(5.8) 

(5.9) 

C7( - Ct)  = *a@) - &B1, (5.10) 

where B, is a constant of integration. Equation (5.10) may be thought of as deter- 
mining the function a( t ) .  Integration of (5.9) gives 

(5.11) 

where B, is another constant of integration. Substituting (5.11) into (5.8) and inte- 
grating it, we find 

$'2+ $3 + (C2 + B,) $' +B,# +Ba = 0, (5.12) 

where B, is the third constant of integration. Equation (5.12) is identical with (5.6) 
if we put 

B, = - 2 ( A +  V2-C2) ,  B, = - C 3 + C V 2 + A C - 2 V ,  (5.13a, b )  

B3 = A'- 4 - 4AC2+ 2AV2+ 4CV + 3C4 - 4C'V2+ V4. ( 5 . 1 3 ~ )  

Then (5.11) agrees with (5.5). 
We have shown that our solutions (3.13), (3.15) and (3.16) correspond to the travel- 

ling wave solutions of NSE. It is interesting to note that the helicoidal filament, the 
straight line, the solitary-wave-type filament and the plane curves correspond to the 
nonlinear plane wave, the constant, the envelope solitary wave and the steady 
travelling-wave solutions of NSE respectively. 

6. Discussion 
We have investigated the motion of a vortex filament by making use of LIE. 

Recently it has been found that a one-dimensional classical spin system is described by 

as(x, t ) /at  = S ( x ,  t )  x a's($, t ) p ,  (6.1) 

in the continuum limit, where S ( x ,  t )  is the unit spin vector and x a continuous variable 
(Lakshmanan et al. 1976; Lakshmanan 1977). This equation is made equivalent to 
LIE by identifying the unit spin vector S(x,t) with the unit tangent vector t of a 
vortex filament. Therefore our solutions also satisfy (6.1). In  fact, Lakshmanan et al. 
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(1976) derived Betchov's intrinsic equation from (6.1) and found a few special solutions 
such as the spin waves, which correspond to our helicoidal filaments, and the solitary- 
wave-type solution. 

It is important and interesting to investigate the stability of the solutions obtained 
in this paper. It is already known that a circular vortex ring is neutrally stable while 
a helicoidal filament is unstable to small disturbances (Betchov 1965; Kambe & Takao 
1971). We are now investigating the stability in the general cases and the results will 
be reported in a future paper. 

The author would like to express his cordial thanks to Dr M. Yamada for helpful 
discussions on the geometry of space curves. 

Appendix 
When SZ = 0, we can solve (2.2)-(2.4) easily. 
In the case V = 0, the inner product of x' and (2.4) together with (2.2) leads to 

C = 0. The outer product of x' and (2.4), on the other hand, by noting that x' . x" = 0, 
gives x" = 0, which yields the straight line 

x(s,t) = as+b, la1 = 1, (A 1) 

where a and b are constant vectors independent of s and t. This may be included in 
the solutions for V = C = 0 and r --= 0 in $3.  

In  the case V + 0, it is convenient to use a Cartesian co-ordinate system. After 
some algebra, we obtain, for x = (x, y, z) ,  

cos V(s - Ct -so) + xo, ( v2 - C2)* 

V2 
X =  

where xo, yo, zo and so are constants and V2 > C2. This represents a helicoidal curve 
with the axis through (xo, yo, zo) and parallel to the z-axis, and may be included in the 
solutions in 3 4.2 by putting a = ( V 2  - C2)*/ V 2  and h = C/V2.  

REFERENCES 
ABRAMOWITZ, M. & STECUN, I. A. 1972 Handbook of Mathematical Functions. Chap. 16-17, 

Dover. 
ASANO, N., TANIUTI, T .  & YAJIMA, N. 1969 Perturbation method for a nonlinear wave modula- 

tion. 11. J. Math. Phys. 10, 2020-2024. 
BENNEY, D. J. & NEWELL, A. C. 1967 The propagation of nonlinear wave envelopes. J. Math. 

BESPALOV, V. I .  & TALANOV, V. I. 1966 Filamentary structure of light beams in nonlinear li- 

BETCHOV, R. 1965 On the curvature and torsion of an isolated vortex filament. J. Fluid Mech. 

EISENHART, L. P. 1960 A Treatise on ths Diflerential Geometry of Curves and Surfaces, 8 $13-1 5. 

& Phys. 46, 133-139. 

quids. J .  Exp. Theor. Phys. Lett. 3, 307-310. 

22, 471-479. 

Dover. 



A vortex filament moving without change of form 409 

FRAENXEL, L. E. 1970 On steady vortex rings of small cross-section in an ideal fluid. Proc. Roy. 

FRAENKEL, L. E. 1972 Examples of steady vortex rings of small cross-section in an ideal fluid. 

HAMA, F. R. 1962 Progressive deformation of a curved vortex filament by its own induction. 

HAMA, F. R. 1963 Progressive deformation of a perturbed line vortex filament, Phys. Fluids 6, 

HASIMOTO, H. 1971 Motion of a vortex filament and its relation to elastica. J .  Phys. Soc. Japan 

HASIMOTO, H. 1972 A soliton on a vortex filament. J .  Fluid Mech. 51, 477-485. 
HASIMOTO, H. & ONO, H. 1972 Nonlinear modulation of gravity waves. J .  Phys. SOC. Japan 33, 

KAMBE, T. & TAXAO, T. 1971 Motion of distorted vortex rings. J .  Phys. Soc. Japan 31, 591- 

KARPMAN, V. I. & KRUSKKAL, E. M. 1969 Modulated waves in nonlinear dispersive media. Sow. 

KELLEY, P. L. 1965 Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005-1008. 
KELVIN, LORD 1880 Mathematical and Physical Papers, vol. 4, p. 152. Cambridge University 

Press. 
LAHSHMANAN, M. 1977 Continuum spin system as an exactly solvable dynamical system. Phys. 

Lett. A 61, 53-54. 
LAXSKMANAN, M., RUIJGROK, T. W. & THOMPSON, C. J. 1976 On the dynamics of a continuum 

spin system. Physica A 84, 577-590. 
LAMB, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press. 
LAMB, G. L. 1977 Solitons on moving space curves. J .  Math. Phys. 18, 1654-1661. 
LIGHTKILL, M. J. 1965 Contributions to the theory of waves in non-linear dispersive systems. 

LIGHTHILL, M. J. 1967 Some special cases treated by the Whitham theory. Proc. Roy. SOC. A 

LOVE, A. E. H. 1927 A Treatise on the Mathematical Theory of Elasticity, 4th edn, p. 401. 
Cambridge University Press. 

MOORE, D. W. & SAFFMAN, P. G. 1972 The motion of a vortex filament with axial flow. Phil. 

ONSAGER, L. 1949 Statistical hydrodynamics. Nuowo Cimento Suppl. 6, 279-287. 
SAFFMAN, P. G. 1961 Propagation of a solitary wave along a magnetic field in a cold collision- 

SAFFMAN, P. G. 1970 The velocity of visoous vortex rings. Stud. Appl. Math. 49, 371-380. 
SCOTT, A. C., CHU, F. Y. F. & MCLAUGHLIN, D. W. 1973 The soliton: Anew concept in applied 

TALANOV, V. I. 1965 Self focusing of wave beams in nonlinear media. J .  Exp. Theor. Phys. Lett. 

TANIUTI, T. & YAJIMA, N. 1969 Perturbation method for a nonlinear wave modulation. I. J .  

TUNG, C. & TING, L. 1967 Motion and decay of a vortex ring. Phys. Fluids 10, 901-910. 
WIDNALL, S. E. 1972 The stability of a helical vortex filament. J .  Fluid Mech. 54, 641-663. 
ZAKHAROV, V. E. & MANAKOV, S. V. 1974 On the complete integrability of a nonlinear Schrodin- 

ger equation. Theor. Math. Phys. 19, 551-559. 
ZAKHAROV, V. E. & SHABAT, A. B. 1972 Exact theory of two-dimensional self-focusing and one- 

dimensional self-modulation of waves in nonlinear media. Sow. Phys. J .  Exp. Theor. Phys. 

ZAKIIAROV, V. E. & SHABAT, A. B. 1973 Interaction between solitons in a stable medium. Sow. 

SOC. A 316, 29-62. 

J .  Fluid Mech. 51, 119-135. 

Phys. Fluids 5, 1156-1162. 

526-534. 

31,293-294. 

805-81 1. 

599. 

Phys. J .  Exp. Theor. Phys. 28, 277-281. 

J .  Inst. Math. Applic. 1, 269-306. 

299,28-53. 

Trans. ROY. BOG. A 272, 403-429. 

free plasma. J .  Fluid Mech. 11, 16-20. 

science. Proc. I.E.E.E. 61, 1443-1483. 

2, 138-141. 

Math. Phys. 10, 1369-1372. 

34,62-69. 

Phys. J .  Exp. Theor. Phys. 37, 823-828. 


